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Abstract: Solid phase synthesis of epoxides from alkenoic acids followed by ring-opening reactions
with sodium azide or thiophenols and subsequent cleavage from the polymeric support afford y-and 8-
lactones in good yields and high purity. © 1997 Published by Elsevier Science Ltd.

Interest in the application of solid phase synthesis in drug research increased rapidly in the past few
years. 12 Undoubtedly, there is a growing need to expand the number of efficient organic reactions for the
synthesis of small molecule libraries.’

The importance of epoxides in organic synthesis is well known and their nucleophilic ring opening
has been extensively studied as a convenient route to create new carbon-carbon or carbon-heteroatom bonds.*
We report herein our investigations concerning the synthesis of polymer-bound epoxides from alkenoic acids
and their use as convenient precursors of functionalized y-and 3-lactones.’ These subunits are commonly
encountered in many natural products and are of importance in insect pheromones.® antifungal substances.
flavor components or in the essential oils of plants.” Additionally y-butyrolactones serve as versatile starting
materials for other important products such as furans, cyclopentenones. etc.®

We first selected four commercially available alkenoic acids as starting material. The carboxyl group
both provides a convenient site for attachment onto a solid support and a useful functionality for a further
cyclisation step. The Solid phase synthesis was initiated by coupling acids 1a-d to Merrifield resin (1.7 mmol
of Cl/g, 1% DVB) according to a literature procedure.? Epoxidation with m-chloroperbenzoic acid in
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methylene chloride at room temperature furnished oxiranes 2a-d.'® FTIR was successfully used in reaction
monitoring since disappearance of absorption at 1640 cm! ensured complete conversion of the alkene
function. The observation of a band at 1730 cm! indicates that the ester moiety was still present (Figure 1).
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Figure 1: FTIR spectra of 1a before (a) and after epoxidation (b).

We first investigated the azidolysis of 2 under usual conditions, i.e. NaN3/NH4Cl in DMF.!! The
reaction was carefully monitored by FTIR spectroscopy to avoid cyclisation during the opening of the epoxide
ring. TFA-treatment of 3 caused spontaneous lactonization and cleavage from the resin. The desired
compounds 5-8 were obtained in good yields and purities. In a similar way, sodium thiolates reacted with 2 at
room temperature in DMF to afford the B-hydroxy thioethers 4. As for the azido derivatives, lactones 9-12
were directly obtained after treatment with trifluoroacetic acid (Scheme 2, Table 1).!2 Examination of the resin
by FTIR showed no absorption at 1730 cm'! indicating that cleavage has been completely achieved.
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Table 1. Lactones 5-12 from nucleophilic ring opening of polymer-bound epoxides

Epoxide Nucleophile n R! R2 Lactone  Purity?  Yield(%)P
2a NaN3 NH4CI 1 H H 5 90 60
2b NaN3 NH4CI 1 CH3 H 6 87 55¢
2¢ NaN3 NH,C! 1 CH; CHj 7 75 48
2d NaN3 NH4CI 2 H H 8 80 s6d
2a PhSNa 1 H H 9 >95 67
2b PhSNa 1 CHj H 10 90 s0¢
2d PhSNa 2 H H 11 75 654
2a p-CH3PhSNa 1 H H 12 95 45¢

2 Purity estimated by GC and NMR analysis after cleavage.b Isolated yield (based upon loading of initial
Merrifield Resin) after flash chromatography. All the new products were identified by 'H NMR,!3C NMR

and mass spectroscopy. ¢ 1/1 Mixture of diastereoisomers. 9 Crude yield. ¢ The corresponding B-hydroxy thioether
4 was not isolated.

If the resin 2 was directly treated with trifluoroacetic acid!? in methylene chloride as before, lactones

13-16 were isolated in moderate to good yields (Scheme 3). GC and NMR analysis of the crude reaction

mixture obtained after cleavage showed purities ranging from 70% (n=2, R!=R2=H) to 90% (n=1, R'=R2=H)

(Table 2).12
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Table 2. Synthesis of lactones 13-16

TFA/CHLCl,
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Epoxide n R! R2 Lactone Purity?  Yield(%)P
2a 1 H H 13 90 57
2b 1 CHj H 14 85 60¢
2c 1 CH3 CH3 15 87 60
2d 2 H H 16 70 564

2 Purity determined by GC and NMR analysis. b Isolated yield (based upon loading of
initial Merrifield Resin) after chromatography. All the new products were identified by
IH NMR,13C NMR and mass spectroscopy. ¢ 1/1 Mixture of diastereoisomers.

d Crude yield.

In summary, these results establish the utility of supported epoxides in solid phase approaches to
functionalized y-and &-lactones. The ample choice of easily available reagents compatible with this two step

sequence show its potential in combinatorial chemistry. Further investigations concerning asymmetric

epoxidation and ring opening with other nucleophiles are currently in progress in our laboratory.
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Gas chromatographic analyses of crude product 6.9, 13 obtained after cleavage.
No diastereoisomeric separation of 6 was observed under these GC conditions. 4

Ho, P-T.; Davies, N. Synthesis 1983, 462.

GC analysis was performed using a commercial Carlo Erba 4160, SE 52 capillary column, 25mx 0,32mm 1.D. Program :
120°C during 2 min., then 120 to 240°C at a rate of 10°C/min. For 9, 180°C during 2 min, then 180 to 240°C at a rate of
10°C/min.
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